Probabilistic Relational Planning with First Order Decision Diagrams

نویسندگان

  • Saket Joshi
  • Roni Khardon
چکیده

Dynamic programming algorithms have been successfully applied to propositional stochastic planning problems by using compact representations, in particular algebraic decision diagrams, to capture domain dynamics and value functions. Work on symbolic dynamic programming lifted these ideas to first order logic using several representation schemes. Recent work introduced a first order variant of decision diagrams (FODD) and developed a value iteration algorithm for this representation. This paper develops several improvements to the FODD algorithm that make the approach practical. These include, new reduction operators that decrease the size of the representation, several speedup techniques, and techniques for value approximation. Incorporating these, the paper presents a planning system, FODD-Planner, for solving relational stochastic planning problems. The system is evaluated on several domains, including problems from the recent international planning competition, and shows competitive performance with top ranking systems. This is the first demonstration of feasibility of this approach and it shows that abstraction through compact representation is a promising approach to stochastic planning.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized First Order Decision Diagrams for First Order Markov Decision Processes

First order decision diagrams (FODD) were recently introduced as a compact knowledge representation expressing functions over relational structures. FODDs represent numerical functions that, when constrained to the Boolean range, use only existential quantification. Previous work developed a set of operations over FODDs, showed how they can be used to solve relational Markov decision processes ...

متن کامل

Stochastic Planning with First Order Decision Diagrams

Dynamic programming algorithms have been successfully applied to propositional stochastic planning problems by using compact representations, in particular algebraic decision diagrams, to capture domain dynamics and value functions. Work on symbolic dynamic programming lifted these ideas to first order logic using several representation schemes. Recent work introduced a first order variant of d...

متن کامل

Practical solution techniques for first-order MDPs

Many traditional solution approaches to relationally specified decision-theoretic planning problems (e.g., those stated in the probabilistic planning domain description language, or PPDDL) ground the specification with respect to a specific instantiation of domain objects and apply a solution approach directly to the resulting ground Markov decision process (MDP). Unfortunately, the space and t...

متن کامل

Decision-theoretic planning with generalized first-order decision diagrams

Many tasks in AI require representation and manipulation of complex functions. First order decision diagrams (FODD) are a compact knowledge representation expressing functions over relational structures. They represent numerical functions that, when constrained to the Boolean range, use only existential quantification. Previous work has developed a set of operations for composition and for remo...

متن کامل

Self-Taught Decision Theoretic Planning with First Order Decision Diagrams

We present a new paradigm for planning by learning, where the planner is given a model of the world and a small set of states of interest, but no indication of optimal actions in these states. The additional information can help focus the planner on regions of the state space that are of interest and lead to improved performance. We demonstrate this idea by introducing novel model-checking redu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Artif. Intell. Res.

دوره 41  شماره 

صفحات  -

تاریخ انتشار 2011